161 research outputs found

    Distilling Causal Effect from Miscellaneous Other-Class for Continual Named Entity Recognition

    Full text link
    Continual Learning for Named Entity Recognition (CL-NER) aims to learn a growing number of entity types over time from a stream of data. However, simply learning Other-Class in the same way as new entity types amplifies the catastrophic forgetting and leads to a substantial performance drop. The main cause behind this is that Other-Class samples usually contain old entity types, and the old knowledge in these Other-Class samples is not preserved properly. Thanks to the causal inference, we identify that the forgetting is caused by the missing causal effect from the old data. To this end, we propose a unified causal framework to retrieve the causality from both new entity types and Other-Class. Furthermore, we apply curriculum learning to mitigate the impact of label noise and introduce a self-adaptive weight for balancing the causal effects between new entity types and Other-Class. Experimental results on three benchmark datasets show that our method outperforms the state-of-the-art method by a large margin. Moreover, our method can be combined with the existing state-of-the-art methods to improve the performance in CL-NERComment: Accepted by EMNLP202

    From Bitcoin to Solana -- Innovating Blockchain towards Enterprise Applications

    Full text link
    This survey presents a comprehensive study of recent advances in block-chain technologies, focusing on how issues that affecting the enterprise adoption were progressively addressed from the original Bitcoin system to Ethereum, to Solana etc. Key issues preventing the wide adoption are scala-bility and performance, while recent advances in Solana has clearly demon-strated that it is possible to significantly improve on those issues by innovat-ing on data structure, processes and algorithms by consolidating various time-consuming algorithms and security enforcements, and differentiate and balance users and their responsibilities and rights, while maintaining the re-quired security and integrity that blockchain systems inherently offer

    An Effective Antenna Pattern Reconstruction Method for Planar Near-Field Measurement System

    Get PDF

    Multi-view 3D Face Reconstruction Based on Flame

    Full text link
    At present, face 3D reconstruction has broad application prospects in various fields, but the research on it is still in the development stage. In this paper, we hope to achieve better face 3D reconstruction quality by combining multi-view training framework with face parametric model Flame, propose a multi-view training and testing model MFNet (Multi-view Flame Network). We build a self-supervised training framework and implement constraints such as multi-view optical flow loss function and face landmark loss, and finally obtain a complete MFNet. We propose innovative implementations of multi-view optical flow loss and the covisible mask. We test our model on AFLW and facescape datasets and also take pictures of our faces to reconstruct 3D faces while simulating actual scenarios as much as possible, which achieves good results. Our work mainly addresses the problem of combining parametric models of faces with multi-view face 3D reconstruction and explores the implementation of a Flame based multi-view training and testing framework for contributing to the field of face 3D reconstruction

    Too Large; Data Reduction for Vision-Language Pre-Training

    Full text link
    This paper examines the problems of severe image-text misalignment and high redundancy in the widely-used large-scale Vision-Language Pre-Training (VLP) datasets. To address these issues, we propose an efficient and straightforward Vision-Language learning algorithm called TL;DR, which aims to compress the existing large VLP data into a small, high-quality set. Our approach consists of two major steps. First, a codebook-based encoder-decoder captioner is developed to select representative samples. Second, a new caption is generated to complement the original captions for selected samples, mitigating the text-image misalignment problem while maintaining uniqueness. As the result, TL;DR enables us to reduce the large dataset into a small set of high-quality data, which can serve as an alternative pre-training dataset. This algorithm significantly speeds up the time-consuming pretraining process. Specifically, TL;DR can compress the mainstream VLP datasets at a high ratio, e.g., reduce well-cleaned CC3M dataset from 2.82M to 0.67M (∼\sim24\%) and noisy YFCC15M from 15M to 2.5M (∼\sim16.7\%). Extensive experiments with three popular VLP models over seven downstream tasks show that VLP model trained on the compressed dataset provided by TL;DR can perform similar or even better results compared with training on the full-scale dataset. The code will be made available at \url{https://github.com/showlab/data-centric.vlp}.Comment: Work in progress. Code: https://github.com/showlab/data-centric.vl

    Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images with Free Attention Masks

    Full text link
    Despite the rapid advancement of unsupervised learning in visual representation, it requires training on large-scale datasets that demand costly data collection, and pose additional challenges due to concerns regarding data privacy. Recently, synthetic images generated by text-to-image diffusion models, have shown great potential for benefiting image recognition. Although promising, there has been inadequate exploration dedicated to unsupervised learning on diffusion-generated images. To address this, we start by uncovering that diffusion models' cross-attention layers inherently provide annotation-free attention masks aligned with corresponding text inputs on generated images. We then investigate the problems of three prevalent unsupervised learning techniques ( i.e., contrastive learning, masked modeling, and vision-language pretraining) and introduce customized solutions by fully exploiting the aforementioned free attention masks. Our approach is validated through extensive experiments that show consistent improvements in baseline models across various downstream tasks, including image classification, detection, segmentation, and image-text retrieval. By utilizing our method, it is possible to close the performance gap between unsupervised pretraining on synthetic data and real-world scenarios

    Dataset Condensation via Generative Model

    Full text link
    Dataset condensation aims to condense a large dataset with a lot of training samples into a small set. Previous methods usually condense the dataset into the pixels format. However, it suffers from slow optimization speed and large number of parameters to be optimized. When increasing image resolutions and classes, the number of learnable parameters grows accordingly, prohibiting condensation methods from scaling up to large datasets with diverse classes. Moreover, the relations among condensed samples have been neglected and hence the feature distribution of condensed samples is often not diverse. To solve these problems, we propose to condense the dataset into another format, a generative model. Such a novel format allows for the condensation of large datasets because the size of the generative model remains relatively stable as the number of classes or image resolution increases. Furthermore, an intra-class and an inter-class loss are proposed to model the relation of condensed samples. Intra-class loss aims to create more diverse samples for each class by pushing each sample away from the others of the same class. Meanwhile, inter-class loss increases the discriminability of samples by widening the gap between the centers of different classes. Extensive comparisons with state-of-the-art methods and our ablation studies confirm the effectiveness of our method and its individual component. To our best knowledge, we are the first to successfully conduct condensation on ImageNet-1k.Comment: old work,done in 202

    Synthesis and Catalytic Activity of Iron Hydride Ligated with Bidentate N-Heterocyclic Silylenes for Hydroboration of Carbonyl Compounds

    Get PDF
    We report the synthesis of a novel bidentate N-heterocyclic silylene (NHSi) ligand, N-(LSi:)-N-methyl-2-pyridinamine (1) (L = PhC­(NtBu)2), and the first bischelate disilylene iron hydride, [(Si,N)­(Si,C)­Fe­(H)­(PMe3)] (2), and monosilylene iron hydride, [(Si,C)­Fe­(H)­(PMe3)3] (2′), through Csp2–H activation of the NHSi ligand. Compounds 1 and 2 were fully characterized by spectroscopic methods and single-crystal X-ray diffraction analysis. Density functional theory calculations indicated the multiple-bond character of the Fe–Si bonds and the π back-donation from Fe­(II) to the Si­(II) center. Moreover, the strong donor character of ligand 1 enables 2 to act as an efficient catalyst for the hydroboration reaction of carbonyl compounds at room temperature. Chemoselective hydroboration is attained under these conditions. This might be the first example of hydroboration of ketones and aldehydes catalyzed by a silylene hydrido iron complex. A catalytic mechanism was suggested and partially experimentally verified
    • …
    corecore